Cartesian and non-Cartesian responses in LGN, V1, and V2 cells.
نویسندگان
چکیده
Cell responses to drifting Cartesian (parallel) and non-Cartesian (concentric, radial, and hyperbolic) stimuli were recorded in and beyond the classical receptive field (CRF) in the lateral geniculate nucleus (LGN), V1, and V2 of anesthetized monkeys. Many cells were equally responsive to Cartesian and non-Cartesian, especially concentric, gratings. Around 15% of cells in each area were significantly more responsive to concentric compared to parallel gratings; however, cells significantly more responsive to parallel compared to concentric gratings were more numerous in the cortex. While many cells responded to hyperbolic and radial gratings, few were most responsive to these gratings. Cell selectivity decreased for Cartesian and increased for non-Cartesian gratings from V1 to V2 and the relative response varied as a function of stimulus extent with respect to the CRE. Complex, nonoriented, nondirectional cells with a low aspect ratio (AR) responded best to non-Cartesian gratings. These results cannot be fully explained using Gabor linear/energy models of simple and complex receptive fields (RFs) although such models predict some cells to respond equally to Cartesian and non-Cartesian gratings. Cells significantly more responsive to non-Cartesian gratings can be accounted for by CRF selectivity influenced by modulation from the nonclassical receptive field (nCRF). The present study shows that Cartesian/non-Cartesian selectivity is not an emergent property of V4 cells but is present at all levels of early visual processing being subserved by a subset of cells with specific tuning properties.
منابع مشابه
Neural coding of image structure and contrast polarity of Cartesian, hyperbolic, and polar gratings in the primary and secondary visual cortex of the tree shrew.
We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic, and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, whereas corresponding VEP values tended to decrease, sugges...
متن کاملOn the Locating Chromatic Number of the Cartesian Product of Graphs
Let c be a proper k-coloring of a connected graph G and Π = (V1, V2, . . . , Vk) be an ordered partition of V (G) into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple cΠ(v) := (d(v, V1), d(v, V2), . . . , d(v, Vk)), where d(v, Vi) = min{d(v, x) | x ∈ Vi}, 1 ≤ i ≤ k. If distinct vertices have distinct color codes, then ...
متن کاملSpectral receptive field properties explain shape selectivity in area V4.
Neurons in cortical area V4 respond selectively to complex visual patterns such as curved contours and non-Cartesian gratings. Most previous experiments in V4 have measured responses to small, idiosyncratic stimulus sets and no single functional model yet accounts for all of the disparate results. We propose that one model, the spectral receptive field (SRF), can explain many observations of se...
متن کاملA comparative study of shape representation in macaque visual areas v2 and v4.
We compared aspects of shape representation in extrastriate visual areas V2 and V4, which are both implicated in shape processing and belong to different hierarchical levels. We recorded responses of cells in awake, fixating monkeys to matched sets of contour and grating stimuli of low or intermediate complexity. These included simple stimuli (bars and sinusoids) and more complex stimuli (angle...
متن کاملCartesian closed subcategories of topological fuzzes
A category $mathbf{C}$ is called Cartesian closed provided that it has finite products and for each$mathbf{C}$-object $A$ the functor $(Atimes -): Ara A$ has a right adjoint. It is well known that the category $mathbf{TopFuzz}$ of all topological fuzzes is both complete and cocomplete, but it is not Cartesian closed. In this paper, we introduce some Cartesian closed subcategories of this cat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Visual neuroscience
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2001